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Introduction

πN scattering is experimentally well known at low energies.

There have been many attempts to study this process using ChPT,
but every one has had their own problems:

Full Covariant ChPT: Power counting problem due to the heavy scale
introduced by the nucleon mass
[Gasser, Sainio and Svarc, NPB 307:779 (1988)].
HBChPT [Jenkins and Manohar, PLB 255 (1991) 558] : Lorentz
invariance is lost, does not converge in the subthreshold region
[Bernard, Kaiser, Meissner, Int.J.Mod.Phys.E4:193-346,1995],
[T. Becher and H. Leutwyler, JHEP 0106 (2001) 01] ⇒ We cannot
check Chiral symmetry predictions for QCD.

For our study we used Infrared Regularization scheme (IR). This
scheme solves the power counting problem keeping manifest Lorentz
invariance. [Becher and Leutwyler, EPJC 9 (1999) 643]
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Introduction

Previous studies in this scheme were done and the main results were:
[Becher and Leutwyler, EPJC 9 (1999) 643]:

The one-loop representation is not precise enough to allow a sufficiently
accurate extrapolation of the physical data to the Cheng-Dashen point.

[K. Torikoshi and P. J. Ellis, PRC 67 (2003) 015208]:

The IR description of the phase shifts was worst than the one of
HBChPT [N. Fettes, U. G. Meißner and S. Steininger, Nucl. Phys.
A 640 (1998) 199].
Huge Goldberger-Treiman relation violation (20 − 30%).
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Formalism

We consider the process πa(q)N(p, σ;α)→ πa
′
(q′)N(p′, σ′;α′)

descomposing the amplitudes in the usual Lorentz and isospin-invariant
form:

Taa′ = δaa′T
+ +

1

2
[τa, τa′ ]T

−

T± = ū
(
p′, σ′

) [
A± +

1

2
(/q + /q

′)B±
]
u (p, σ)

We assume isospin symmetry and consider the states with definite isospin
I = 3/2 and I = 1/2, and definite total angular momentum J and orbital
angular momentum `:

TIJ`(s) =
1√

4π(2`+ 1)(0σσ|`12J)

∑
m,σ′

∫
d~̂p′(mσ′σ|`1

2
L)

× Ym
` (~̂p′)∗〈π(−~p′; a′)N(~p′, σ′;α′)|T |π(−~p; a)N(~p, σ;α)〉I
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Formalism

For the calculation of the πN amplitude up to O(p3), we use the chiral
Lagrangian:

LχPT = L(2)ππ + L(4)ππ + L(1)πN + L(2)πN + L(3)πN

Where the superscript indicates de chiral order and L(n)ππ and L(n)πN
corresponds to a pure mesonic Lagrangian and a Lagrangian with baryons,
respectively, of chiral order n.
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Formalism

That Lagrangians have the following form:

L(2)ππ =
F 2

4
〈uµuµ + χ+〉

L(4)ππ =
1

16
`4
(
2〈uµuµ〉〈χ+〉+ 〈χ+〉2

)
+ . . .

Where the ellipsis refers to terms not needed in the calculations given here
and 〈. . . 〉 refers to the trace over the isospin matrices.. F is the pion weak
decay constant in the chiral limit and

u2 = U , uµ = iu†∂µU u† , χ± = u†χu† ± uχ†u

U(x) =

√
1− ~π(x)2

F 2
+ i

~π(x) · ~τ
F

(Non-lineal sigma parametrization)
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Formalism

And the πN Lagrangians:

L(1)
πN = ψ̄(i 6D − ◦

m)ψ +
g

2
ψ̄ 6u γ5ψ ,

L(2)
πN = c1〈χ+〉ψ̄ψ −

c2
4m2
〈uµuν〉(ψ̄DµDνψ + h.c.) +

c3
2
〈uµuµ〉ψ̄ψ

− c4
4
ψ̄γµγν [uµ, uν ]ψ + . . . ,

L(3)
πN = ψ̄

(
−d1 + d2

4m
([uµ, [Dν , u

µ] + [Dµ, uν ]]Dν + h.c.)

+
d3

12m3
([uµ, [Dν , uλ]](DµDνDλ + sym.) + h.c.)

+ i
d5
2m

([χ−, uµ]Dµ + h.c.)

+ i
d14 − d15

8m

(
σµν〈[Dλ, uµ]uν − uµ[Dν , uλ]〉Dλ + h.c.

)
+

d16
2
γµγ5〈χ+〉uµ +

id18
2
γµγ5[Dµ, χ−]

)
ψ + . . .
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Perturbative Calculations

From the usual power counting, we have the following contributions:

Tree level diagrams using vertices of L(1)πN , L(2)πN and L(3)πN .

Loop diagrams using only L(1)πN and L(2)ππ .
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Fits

We consider the phase shifts of the partial wave analyses of the Karlsruhe
group [Koch, NPA 448 (1986) 707] (KA85) and the current one of the GWU
group [R. A. Arndt et al., PRC 74 (2006) 045205. solution SM01] (WI08).Due
to the absence of errors in these analyses there is some ambiguity in the
calculation of the χ2 so:

We assing an error to every point as the sum in quadrature of a
systematic plus a relative error.

err(δ) =
√

e2s + e2r δ
2

We take er = 2% as a safer estimate for isospin breaking effects (not
taken into account in our study).

And we take es = 0.1 degrees in order to stabilize fits because an
es = 0 gives too much weight in the threshold region.

These values of es and er are not determinant for our conclusions.
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Perturbative Fits

We consider two strategies to fit the KA85 and WI08 data.

First strategy (KA85-1, WI08-1):

Fit phase shifts up to
√
smax = 1.13 GeV .

We use the standard χ2

Second strategy (KA85-2, WI08-2):

Fit up to
√
smax = 1.13 GeV .

Instead of fitting the P33 phase shift, we fit the function
tan δP33
|~p|3 (comes

from the ERE) for the three points with energy less than 1.09 GeV.
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KA85 Fits

Solid line: KA85-1. Dashed line: KA85-2.
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WI08 Fits

Solid line: WI08-1. Dashed line: WI08-2.
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LECs Summary

Results for the LECs:

LEC KA85-1 KA85-2 WI08-1 WI08-2 Average
c1 −0.71± 0.49 −0.79± 0.51 −0.27± 0.51 −0.30± 0.48 −0.52± 0.60
c2 4.32± 0.27 3.49± 0.25 4.28± 0.27 3.55± 0.30 3.91± 0.54
c3 −6.53± 0.33 −5.40± 0.13 −6.76± 0.27 −5.77± 0.29 −6.12± 0.72
c4 3.87± 0.15 3.32± 0.13 4.08± 0.13 3.60± 0.16 3.72± 0.37

d1 + d2 2.48± 0.59 0.94± 0.56 2.53± 0.60 1.16± 0.65 1.78± 1.1
d3 −2.68± 1.02 −1.10± 1.16 −3.65± 1.01 −2.32± 1.04 −2.44± 1.6
d5 2.69± 2.20 1.86± 2.28 5.38± 2.40 4.83± 2.18 3.69± 2.93

d14 − d15 −1.71± 0.73 1.03± 0.71 −1.17± 1.00 1.27± 1.11 −0.145± 1.88
d18 −0.26± 0.40 −0.07± 0.44 −0.86± 0.43 −0.72± 0.40 −0.48± 0.58

Following a conservative procedure, the error given in the average is
the sum in quarature of the largest statistical error and the one
resulting from the dispersion in the central values.

The average is compatible with those from O(p3) HBChPT, except
for the d14 − d15 that differs by more than one standard deviation.
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LECs Comparision

LEC Average HBCHPT HBCHPT HBCHPT RS
O(p3) [1] Disp. [2] O(p3) [3] [3]

c1 −0.52± 0.60 (−1.71,−1.07) −0.81± 0.12 −1.02± 0.06
c2 3.91± 0.54 (3.0, 3.5) 8.43± 56.9 3.32± 0.03 3.9
c3 −6.12± 0.72 (−6.3,−5.8) −4.70± 1.16 −5.57± 0.05 −5.3
c4 3.72± 0.37 (3.4, 3.6) 3.40± 0.04 3.7

d1 + d2 1.78± 1.1 (3.2, 4.1)
d3 −2.44± 1.6 (−4.3,−2.6)
d5 3.69± 2.93 (−1.1, 0.4)

d14 − d15 −0.145± 1.88 (−5.1,−4.3)
d18 −0.48± 0.58 (−1.6,−0.5)

[1] N. Fettes, U. G. Meißner and S. Steininger, Nucl. Phys. A 640 (1998) 199.

[2] P. Buettiker and U. G. Meißner, Nucl. Phys. A 668 (2000) 97.

[3] V. Bernard, N. Kaiser and U.-G. Meißner, Nucl. Phys. A 615 (1997) 483.
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Threshold parameters summary

In order to obtain the scattering lengths and volumes we performed an
effective range expansion (ERE) fit to our results in the low energy region,
because numerical poblems prevent us to take directly the limit:
lim|~p|→0|~p| ReT

8π
√
s|~p|1+2`

Partial KA85-1 KA85-2 WI08-1 WI08-2 Average
Wave
aS31 −0.100± 0.001 −0.103± 0.001 −0.081± 0.001 −0.082± 0.001 −0.092± 0.012

aS11 0.171± 0.001 0.172± 0.002 0.165± 0.002 0.167± 0.002 0.169± 0.004

a+0+ −0.010± 0.001 −0.011± 0.001 0.001± 0.001 0.001± 0.001 −0.005± 0.007

a−0+ 0.090± 0.001 0.092± 0.001 0.082± 0.001 0.083± 0.001 0.087± 0.005

aP31 −0.052± 0.001 −0.051± 0.001 −0.048± 0.001 −0.051± 0.001 −0.051± 0.002

aP11 −0.078± 0.001 −0.088± 0.001 −0.073± 0.001 −0.080± 0.001 −0.080± 0.006

aP33 0.251± 0.002 0.214± 0002 0.252± 0.002 0.222± 0.002 0.232± 0.017

aP13 −0.034± 0.001 −0.035± 0.001 −0.032± 0.001 −0.035± 0.001 −0.034± 0.002
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Threshold parameters comparision

Results for the threshold parameters:

Partial Average KA85 WI08
Wave
aS31 −0.092± 0.012 −0.100± 0.004 −0.084
aS11 0.169± 0.004 0.175± 0.003 0.171
a+0+ −0.005± 0.007 −0.008 −0.0010± 0.0012
a−0+ 0.087± 0.005 0.092 0.0883± 0.0005
aP31 −0.051± 0.002 −0.044± 0.002 −0.038
aP11 −0.080± 0.006 −0.078± 0.002 −0.058
aP33 0.232± 0.017 0.214± 0.002 0.194
aP13 −0.034± 0.002 −0.030± 0.002 −0.023

None of our fits (KA85-1,KA85-2,WI08-1,WI08-2) is compatible with
the value of aP11 given by WI08
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Goldberger-Trieman relation

The value of d18 is important because is directly related to the violation of
the Goldberger-Trieman (GT) relation.One has, up to O(M3

π):

gπN =
gAm

Fπ

(
1− 2M2

πd18
gA

)
We quantify the deviaton from the GT relation by:

∆GT =
gπNFπ
gAm

− 1
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Goldberger-Trieman relation

For our averaged value of d18 we have:

∆GT = 0.015± 0.018

Which is compatible with the values around 2− 3% obtained from πN and
NN partial wave analyses [Arndt, Workman and Pavan, PRC 49 (1994) 2729],
[Schröder et al],[Swart, Rentmeester and Timmermans, πN Newsletter 13 (1997)96].
This value of ∆GT gives:

gπN = 13.07± 0.23 or f 2 =
(gπNMπ)2

π
= 0.077± 0.003
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Goldberger-Trieman relation

But when we implement the loop contribution, we obtain a huge GT
relation violation:

For the fit KA85-1 one has a 22% of violation for µ = 1 GeV (scale)
while for µ = 0.5 GeV a 15% stems.

⇒ IR gives rise to a huge GT relation violation due to the 1/m relativistic
resummation performed by this scheme.
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Part IV

Unitarized Calculations
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Unitarized Calculations

In order to implement unitarity to the πN amplitude and take care of the
analyticity properties associated with the right-hand cut we write our
unitarized amplitude TIJ` by means of an interaction kernel TIJ` and the
unitary pion-nucleon loop function g(s):

TIJ` =
1

T −1IJ` + g(s)

TIJ` satisfies unitarity exactly.

The interaction kernel is determined order by order by matching with
the perturbative ChPT result [J. A. Oller and U. G. Meißner, PLB

500:263-272 (2001)].

a1 is fixed by requiring g(m2) = 0 (in order to have the P11 nucleon
pole in its right position).
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Unitarized Calculations

We introduce the contribution of the ∆(1232) in P33 through a CDD
[Castillejo, Dalitz and Dyson, PR 101 (1956) 453],
[Oller and Oset, PRD 60, 074023 (1999)]:

The CDD pole conserves the discontinuities of the partial wave
amplitude across the cuts.

The CDD pole corresponds to a zero of the partial wave amplitude
along the real axis and hence to a pole in the inverse of the amplitude.

T 3
2
3
2
1 =

(
T −13

2
3
2
1

+
γ

s − sP
+ g(s)

)−1
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Unitarized Calculations

IR regularization introduces unphysical cuts due to the infinite order
resummation of the sub-leading 1/m kinetic energy when u = 0, that
correspond to s = 2(m2 + M2

π) & 1.342 GeV2. Consequences:

Strong violation of unitarity.

Strong rising of the phase-shifts from energies
√
s & 1.26 GeV.

⇒ We redo the fits up to
√
smax = 1.25 GeV for all the partial waves in

the same way than in the perturbative case.
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Unitarized Calculations

Solid line: Fit to KA85 data. Dashed line: Fit to WI08 data.
J. M. Alarcón (Universidad de Murcia) NSTAR 2011 27 / 39



Unitarized Calculations

We obtain a good agreement with data in the whole energy range
form threshold up to 1.25 GeV.

Good reproduction of the raise in the P33 phase shifts associated with
de ∆(1232) resonance.

Compared with the perturbative calculation, one observes a drastic
increase in the range of energy with globally acceptable description of
the data.
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Unitarized Calculations

LEC Fit Fit Average Partial Fit Fit Average
KA85 WI08 (Perturbative) Wave KA85 WI08 (Perturbative)

c1 −0.48± 0.51 −0.52± 0.60 −0.53± 0.48 aS31 −0.115 −0.104 −0.092± 0.012

c2 4.62± 0.27 4.73± 0.30 3.91± 0.54 aS11 0.152 0.150 0.169± 0.004

c3 −6.16± 0.27 −6.41± 0.29 −6.12± 0.72 a+0+ −0.026 −0.020 −0.005± 0.007

c4 3.68± 0.13 3.81± 0.16 3.72± 0.37 a−0+ 0.089 0.085 0.087± 0.005

d1 + d2 2.55± 0.60 2.70± 0.65 1.78± 1.1 aP31 −0.050 −0.048 −0.051± 0.002

d3 −1.61± 1.01 −1.73± 1.04 −2.44± 1.6 aP11 −0.080 −0.075 −0.080± 0.006

d5 0.93± 2.40 1.13± 2.18 3.69± 2.93 aP33 0.245 0.250 0.232± 0.017

d14 − d15 −0.46± 1.00 −0.61± 1.11 −0.145± 1.88 aP13 −0.41 −0.039 −0.034± 0.002

d18 0.01± 0.21 −0.03± 0.20 −0.48± 0.58
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Unitarized Calculations

The values of these LECs do not constitute an alternative
determination to the perturbative results.

These values only should be employed within UChPT studies.

LECs and threshold parameters compatible with the average values
given in the perturbative calculation.

For the threshold parameters we obtain values compatible with the
averaged values of the perturbative calculation.

Studying the GT relation deviation we obtain the same value than in
the perturbative study.
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Part V

Summary and Conclusions
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Summary and Conclusions

We study πN employing ChPT in IR scheme up to O(p3).

Perturbative calculations:

We used two sets of data (form Karlsruhe and GWU groups) to fit our
theorical result.
An accurate reproduction of the phase-shifts was obtained up to
1.14 GeV, similar in quality to that obtained previously with O(p3)
HBChPT ⇒ Improvement compared with previous works.
We obtain a much better reproduction of the P11 phase shifts for the
Karlsruhe PWA, while IR ChPT is not able to reproduce the P11 phase
shift for the GWU current solution even at very low energies.
The averaged values of the LECs and the threshold parameters
resulting from the two strategies are in good agreement with other
previous determinations.
High GT deviation (20− 30%) when the full IR ChPT calculation is
included.
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Summary and Conclusions

Unitarized calculations:

We included non-perturbative methods of UChPT to resum the
right-hand cut of the πN partial waves.
We included the ∆(1232) through a CDD.
We obtained a good reproduction of the phase shifts up to√
s ≈ 1.25 GeV. We could not go beyond this energy due to the

unphysical cuts introduced by IR.
We obtained values for the LECs and threshold parameters are
compatible to the perturbative case.
We obtained the same GT deviation than in the perturbative study.
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EOMS

But we still have one possible solution for the limitations of IR: The
Extended-On-Mass-Shell scheme (EOMS),
[Fuchs, Gegelia, Japaridze and Scherer, PRD 68, 056005 (2003)].

This scheme removes explicity the power counting breaking terms
appearing in the loop integrals in dimensional regularization.

These PCBT terms are absorbed in the LECs (IR result).

We expect: scale independence, reasonable GT relation violation
(as in the full relativistic calculation of Gasser et al.), amplitudes free
of unphysical cuts (crucial for unitarized calculations).

⇒ As preliminar results...

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 34 / 39



EOMS

But we still have one possible solution for the limitations of IR: The
Extended-On-Mass-Shell scheme (EOMS),
[Fuchs, Gegelia, Japaridze and Scherer, PRD 68, 056005 (2003)].

This scheme removes explicity the power counting breaking terms
appearing in the loop integrals in dimensional regularization.

These PCBT terms are absorbed in the LECs (IR result).

We expect: scale independence, reasonable GT relation violation
(as in the full relativistic calculation of Gasser et al.), amplitudes free
of unphysical cuts (crucial for unitarized calculations).

⇒ As preliminar results...

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 34 / 39



EOMS

But we still have one possible solution for the limitations of IR: The
Extended-On-Mass-Shell scheme (EOMS),
[Fuchs, Gegelia, Japaridze and Scherer, PRD 68, 056005 (2003)].

This scheme removes explicity the power counting breaking terms
appearing in the loop integrals in dimensional regularization.

These PCBT terms are absorbed in the LECs (IR result).

We expect: scale independence, reasonable GT relation violation
(as in the full relativistic calculation of Gasser et al.), amplitudes free
of unphysical cuts (crucial for unitarized calculations).

⇒ As preliminar results...

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 34 / 39



EOMS

But we still have one possible solution for the limitations of IR: The
Extended-On-Mass-Shell scheme (EOMS),
[Fuchs, Gegelia, Japaridze and Scherer, PRD 68, 056005 (2003)].

This scheme removes explicity the power counting breaking terms
appearing in the loop integrals in dimensional regularization.

These PCBT terms are absorbed in the LECs (IR result).

We expect: scale independence, reasonable GT relation violation
(as in the full relativistic calculation of Gasser et al.), amplitudes free
of unphysical cuts (crucial for unitarized calculations).

⇒ As preliminar results...

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 34 / 39



EOMS

But we still have one possible solution for the limitations of IR: The
Extended-On-Mass-Shell scheme (EOMS),
[Fuchs, Gegelia, Japaridze and Scherer, PRD 68, 056005 (2003)].

This scheme removes explicity the power counting breaking terms
appearing in the loop integrals in dimensional regularization.

These PCBT terms are absorbed in the LECs (IR result).

We expect: scale independence, reasonable GT relation violation
(as in the full relativistic calculation of Gasser et al.), amplitudes free
of unphysical cuts (crucial for unitarized calculations).

⇒ As preliminar results...

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 34 / 39



EOMS-KA85

-9
-8
-7
-6
-5
-4
-3
-2
-1

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

S31

 2
 3
 4
 5
 6
 7
 8
 9

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

S11

-2.5

-2

-1.5

-1

-0.5

 0

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P31

-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P11

 0

 5

 10

 15

 20

 25

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P33

-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P13

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 35 / 39



EOMS-WI08

-9
-8
-7
-6
-5
-4
-3
-2
-1

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

S31

 2
 3
 4
 5
 6
 7
 8
 9

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

S11

-2
-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P31

-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P11

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P33

-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

P13

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 36 / 39



FIN

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 37 / 39



References

[T. Becher and H. Leutwyler, JHEP 0106 (2001) 01] T. Becher and H.
Leutwyler, JHEP 0106 (2001) 017.

[N. Fettes and U.-G. Meißner, NPA 693 (2001) 693] N. Fettes and U.-G.
Meißner, Nucl. Phys. A 693 (2001) 693.

[F. James, Minuit Reference Manual D 506 (1994)] F. James, Minuit
Reference Manual D 506 (1994).

[1] N. Fettes, U. G. Meißner and S. Steininger, Nucl. Phys. A 640 (1998)
199.

[2] P. Buettiker and U. G. Meißner, Nucl. Phys. A 668 (2000) 97.

[3] V. Bernard, N. Kaiser and U.-G. Meißner, Nucl. Phys. A 615 (1997)
483.

[K. Torikoshi and P. J. Ellis, PRC 67 (2003) 015208] K. Torikoshi and P.
J. Ellis, Phys. Rev. C 67 (2003) 015208.

[R. A. Arndt et al., PRC 74 (2006) 045205. solution SM01] Computer
code SAID, online program at http://gwdac.phys.gwu.edu/ , solution
WI08. R. A. Arndt et al., Phys. Rev. C 74 (2006) 045205. solution
SM01.

J. M. Alarcón (Universidad de Murcia) NSTAR 2011 38 / 39



References

[U. G. Meißner and J. A. Oller, NPA 673, 311 (2000)] U. G. Meißner and
J. A. Oller, Nucl. Phys. A 673, 311 (2000).

[J. A. Oller and U. G. Meißner, Phys.Lett.B500:263-272 (2001)]

J. A. Oller and U. G. Meißner,

[Gasser, Sainio and Svarc, NPB 307:779 (1988)] J. Gasser, M. E. Sainio
and A. Svarc, NPB 307:779 (1988)

[Jenkins and Manohar, PLB 255 (1991) 558] E. E. Jenkins and A. V.
Manohar, Phys. Lett. B 255 (1991) 558.

[Becher and Leutwyler, EPJC 9 (1999) 643] T. Becher and H. Leutwyler,
Eur. Phys. J. C 9 (1999) 643

[Koch, NPA 448 (1986) 707] R. Koch, Nucl. Phys. A 448 (1986) 707; R.
Koch and E. Pietarinen, Nucl. Phys. A 336 (1980) 331.

[Arndt, Workman and Pavan, PRC 49 (1994) 2729] R. A. Arndt, R. L.
Workman and M. M. Pavan, Phys. Rev. C 49 (1994) 2729.
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